lunes, 25 de abril de 2011

Física nuclear

La física nuclear es una rama de la física que estudia las propiedades y el comportamiento de los núcleos atómicos. La física nuclear es conocida mayoritariamente por la sociedad por el aprovechamiento de la energía nuclear en centrales nucleares y en el desarrollo de armas nucleares, tanto de fisión como de fusión nuclear. En un contexto más amplio, se define la física nuclear y de partículas como la rama de la física que estudia la estructura fundamental de la materia y las interacciones entre las partículas subatómicas.

Fisión
Los conceptos de fisión y fusión nuclear difieren en las características de formación de cada uno. De esta forma se encuentra que la fisión (utilizada en las bombas y reactores nucleares) consiste en el "bombardeo" de partículas subatómicas al uranio (o a cualquier elemento transuránico, siempre y cuando sus características lo permitan), trayendo como consecuencia la fisión (de allí su nombre) del átomo y con esto la de los demás átomos adyacentes al bombardeado en reacción en cadena. Mientras que, la fusión es la unión bajo ciertas condiciones (altas presiones, altas temperaturas, altas cargas, etc.) de dos o más átomos y genera mucha más energía que la fisión.

 Fusión

La fusión representa diversos problemas, ya que a nivel atómico las cargas de los átomos se repelen entre sí impidiendo la unión de estos, por esto se recurre generalmente a la utilización de isotópos ligeros, con menor carga eléctrica (como el hidrógeno y sus isótopos deuterio y tritio). En ciertas condiciones, definidas por los criterios de Lawson, se lograría la fusión de dichos átomos. Para ello primero se les debe convertir al estado de plasma, ionizándolos, favoreciendo a la unión. Esto se consigue mediante dos métodos básicos: el confinamiento magnético y el confinamiento inercial. Existen varias posibilidades para producir la fusión a partir de los isótopos del hidrógeno.
La energía de la fusión aun no se ha podido aprovechar con fines prácticos.
Representa algunas ventajas en relación a la fisión nuclear:
  1. Produce menos residuos nucleares.
  2. En los diseños actuales se necesita un aporte exterior de energía para que la reacción en cadena se mantenga.
  3. Produce más energía por reacción.
También posee desventajas:
  1. La reacción más energética es deuterio+tritio, y el tritio es un isótopo muy escaso en la Tierra.
  2. Las condiciones necesarias son tan extremas que solo se dan en el centro de las estrellas, por lo que son muy difíciles de alcanzar y controlar.
Análisis radioquímico como apoyo a la detección
Las partículas alfa, que son emitidas normalmente por elementos con números atómicos superiores a 83, tienen la energía discreta característica de los nucleidos emisores. Así, los emisores α pueden ser identificados midiendo la energía de las partículas α. Las muestras a medir deben ser muy delgadas porque estas partículas pierden rápidamente energía al atravesar el material. Los rayos gamma también tienen la energía discreta característica del nucleido que se desintegra, por lo que la energía de estos rayos también puede usarse para identificar nucleidos. Puesto que los rayos gamma pueden atravesar una cantidad considerable de material sin perder energía, la muestra no tiene que ser delgada. Los espectros de energía de las partículas beta (y los positrones) no son útiles para identificar nucleidos porque se extienden sobre todas las energías hasta un máximo para cada emisor β.

http://es.wikipedia.org/wiki/F%C3%ADsica_nuclear#Fisi.C3.B3n

No hay comentarios:

Publicar un comentario